

False Positive Results Visualized: A Simulation in R

mb

2022-07-13

Let's assume a simple theory where one variable (x) is related to one other variable (y), but in fact the theory is false. That is, in reality there is no relationship between x and y. However, if enough studies are run that test this relationship, some of them are bound to find it. A typical study in social science research might include 50 participants (N). Parts of the code are adapted from this great resource.

Setup and generating data

```
library(tidyverse)
library(broom)
N <- 50
s <- 10000
```

Next, the `rnorm()` function is used to sample 500,000 values for x and y. The defaults are `mean = 0` and `sd = 1`. Everything is collected in a data frame (tibble) including a label for the study. So, the first 50 lines in `sim_data` will all be from study 1, rows 51 to 100 from study 2, and so on.

```
set.seed(42)
sim_data <- tibble(study = rep(1:s, each=N),
                  x = rnorm(N * s),
                  y = rnorm(N * s))
sim_data

## # A tibble: 500,000 x 3
##   study      x      y
##   <int>  <dbl>  <dbl>
## 1 1     1.37 -0.0965
## 2 1    -0.565  1.06
## 3 1     0.363  0.0569
## 4 1     0.633  0.0659
## 5 1     0.404 -0.151
## 6 1    -0.106  0.134
## 7 1     1.51   0.577
## 8 1    -0.0947 -0.982
## 9 1     2.02   -1.42
## 10 1    -0.0627 -2.55
## # ... with 499,990 more rows
```

The true correlation is zero

Now we can look at the bivariate correlation between x and y across all rows/cases. This disregards the nested structure of the data (i.e., the fact that it's not 500,000 cases in one study but 50 cases each in 10,000 studies), but gives us a value very close to the true relationship. The true relationship is zero because the two randomly generated

variables are independent. We also see that the means of x and y are close to zero and their standard deviations close to 1.

```
sim_data %>% select(x,y) %>% cor()

##           x         y
## x 1.000000000 0.002662993
## y 0.002662993 1.000000000

sim_data %>% summarise(
  count = n(),
  mean.x = mean(x), sd.x = sd(x),
  mean.y = mean(y), sd.y = sd(y)
)

## # A tibble: 1 x 5
##   count   mean.x   sd.x   mean.y   sd.y
##   <int>     <dbl>   <dbl>     <dbl>   <dbl>
## 1 500000 -0.0000404 0.999 0.00119  1.00
```

Within each of the 10,000 studies, things can look quite different though.

```
sim_data %>% group_by(study) %>%
  summarise(
  count = n(),
  mean.x = mean(x), sd.x = sd(x),
  mean.y = mean(y), sd.y = sd(y)
)

## # A tibble: 10,000 x 6
##   study count   mean.x   sd.x   mean.y   sd.y
##   <int> <int>     <dbl>   <dbl>     <dbl>   <dbl>
## 1     1     1  -0.0357  1.15  -0.128  1.12
## 2     2     2  0.101   0.925 -0.0571 1.04
## 3     3     3  -0.151   0.928 -0.236  1.03
## 4     4     4  -0.0237  0.885  0.0927 0.935
## 5     5     5  0.00794  0.988 -0.237  1.04
## 6     6     6  -0.0287  1.05   0.0780 1.02
## 7     7     7  -0.0615  0.795  0.256  0.964
## 8     8     8  0.127   0.949 -0.0282 1.02
## 9     9     9  -0.119   0.996  0.0144 1.07
## 10   10    10  -0.116   1.05  -0.147  0.968
## # ... with 9,990 more rows
```

Next, we'll focus on the correlation within each study (new variable r) sorted by the size of the coefficient. There are quite a few studies in which the correlation is clearly not zero.

```
res <- sim_data %>%
  group_by(study) %>%
  summarize(r = cor(x, y)) %>%
  arrange(desc(r))
res

## # A tibble: 10,000 x 2
##   study      r
##   <int>  <dbl>
## 1     1  0.525
## 2     2  0.492
```

```

## 3 3989 0.460
## 4 7003 0.449
## 5 2733 0.444
## 6 4521 0.442
## 7 477 0.441
## 8 7170 0.439
## 9 8109 0.436
## 10 8150 0.435
## # ... with 9,990 more rows

```

By the way, the mean of the individual study correlations is not (necessarily) the same as the overall correlation.

```

res %>% summarise(average.cor = mean(r))

## # A tibble: 1 x 1
##   average.cor
##   <dbl>
## 1 0.00280

sim_data %>% summarise(global.cor = cor(x,y))

## # A tibble: 1 x 1
##   global.cor
##   <dbl>
## 1 0.00266

```

At the other end, we also get negative correlations of roughly the same magnitude.

```

res %>% arrange(r)

## # A tibble: 10,000 x 2
##   study      r
##   <int>  <dbl>
## 1 232 -0.510
## 2 3690 -0.495
## 3 7200 -0.474
## 4 4112 -0.465
## 5 6375 -0.458
## 6 2073 -0.454
## 7 239 -0.452
## 8 9139 -0.440
## 9 4528 -0.437
## 10 7976 -0.435
## # ... with 9,990 more rows

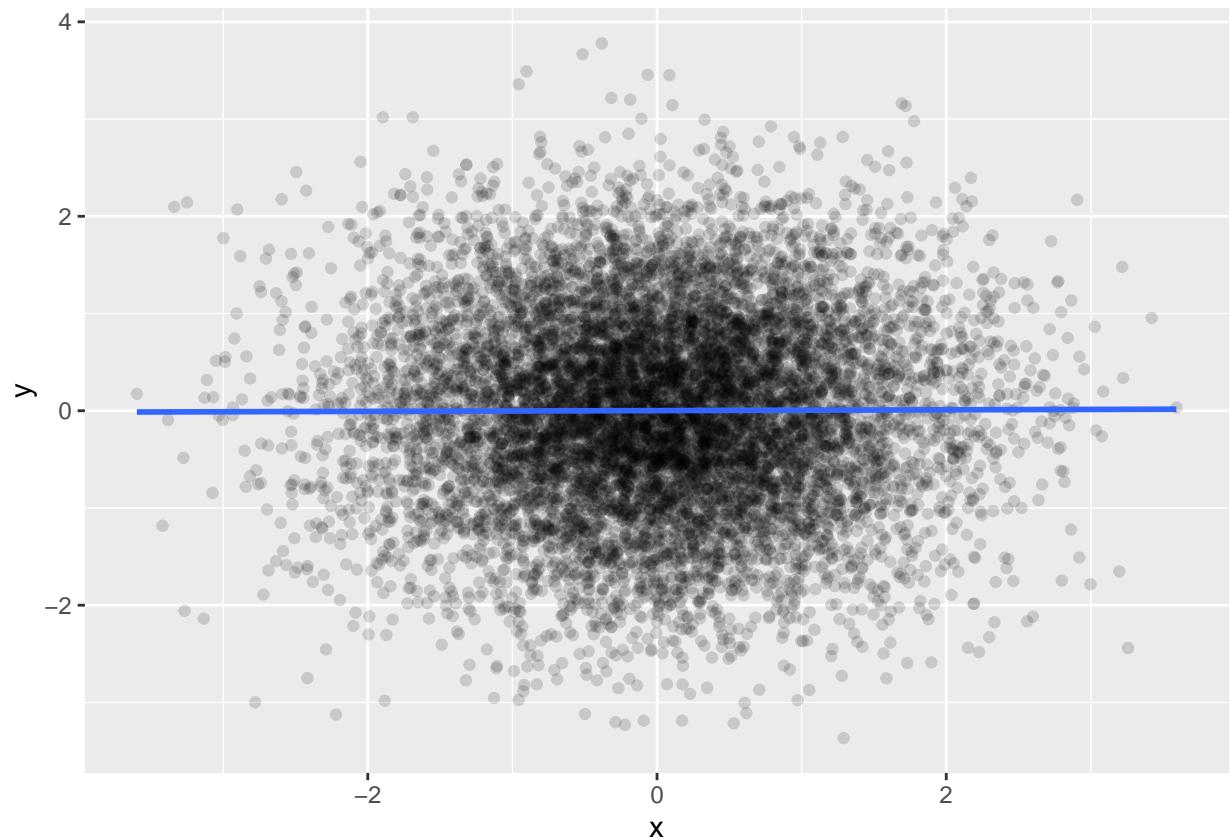
```

Without grouping by study, we already saw that the correlation is essentially zero, which a scatterplot of a random subset of cases (because there are too many to plot nicely) confirms.

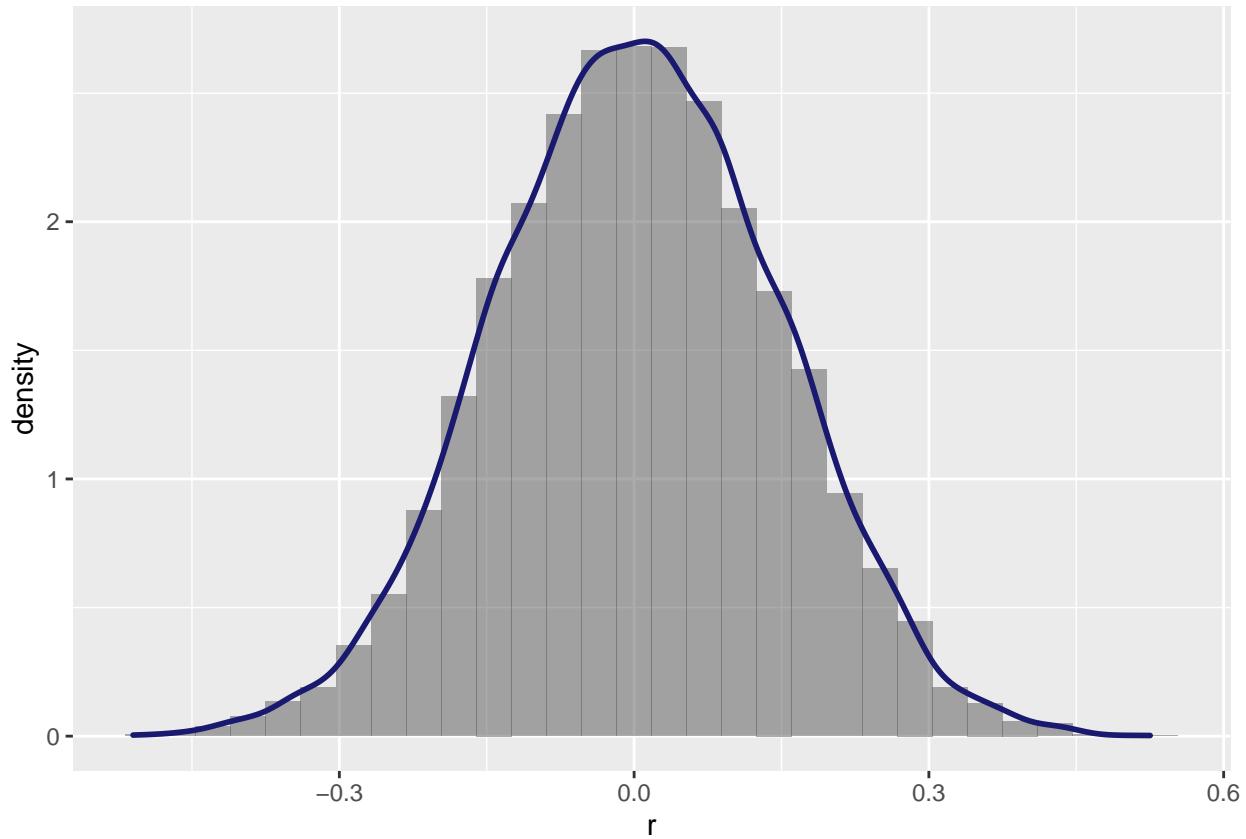
```

sim_data %>% slice_sample(n = 10000) %>%
  ggplot(aes(x, y)) +
  geom_point(alpha = 0.15) +
  geom_smooth(method = "lm", se = FALSE)

```

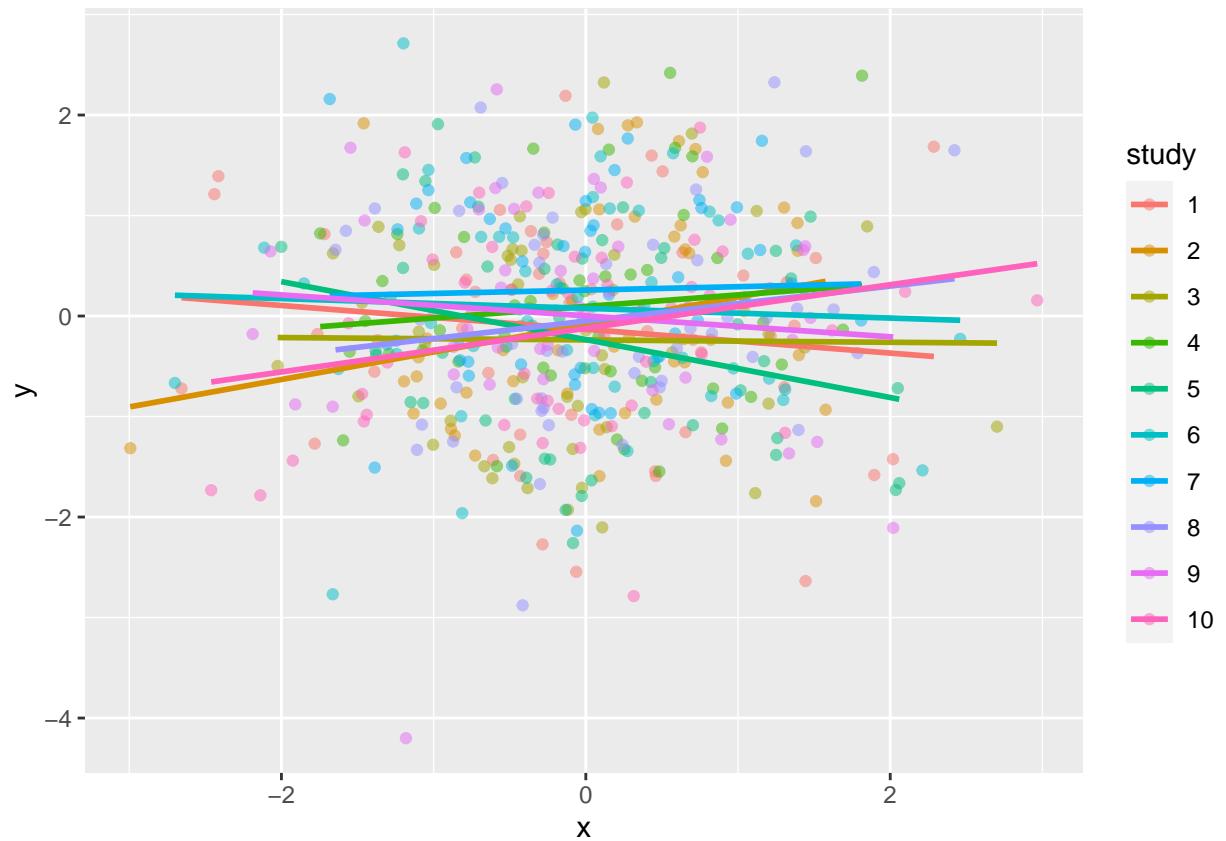


```
res %>%
  ggplot(aes(x = r)) +
  geom_histogram(aes(y = stat(density)), alpha = 0.5) +
  geom_density(color = "midnightblue", lwd = 1)
```



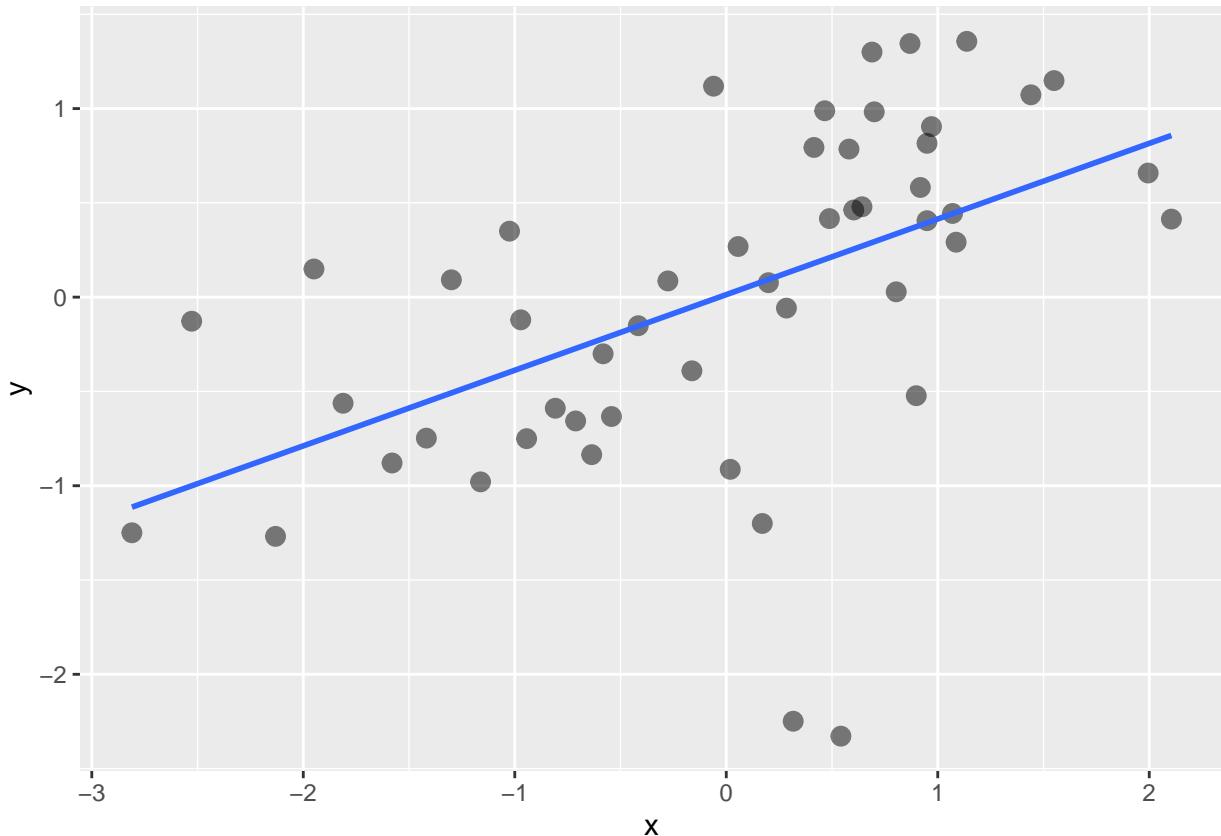
Plotting a subset of studies – here just the first 10 – we see that some fit lines have a positive and some a negative slope.

```
sim_data %>% filter(study %in% 1:10) %>%
  mutate(study = as_factor(study)) %>%
  ggplot(aes(x, y, color = study)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = FALSE)
```



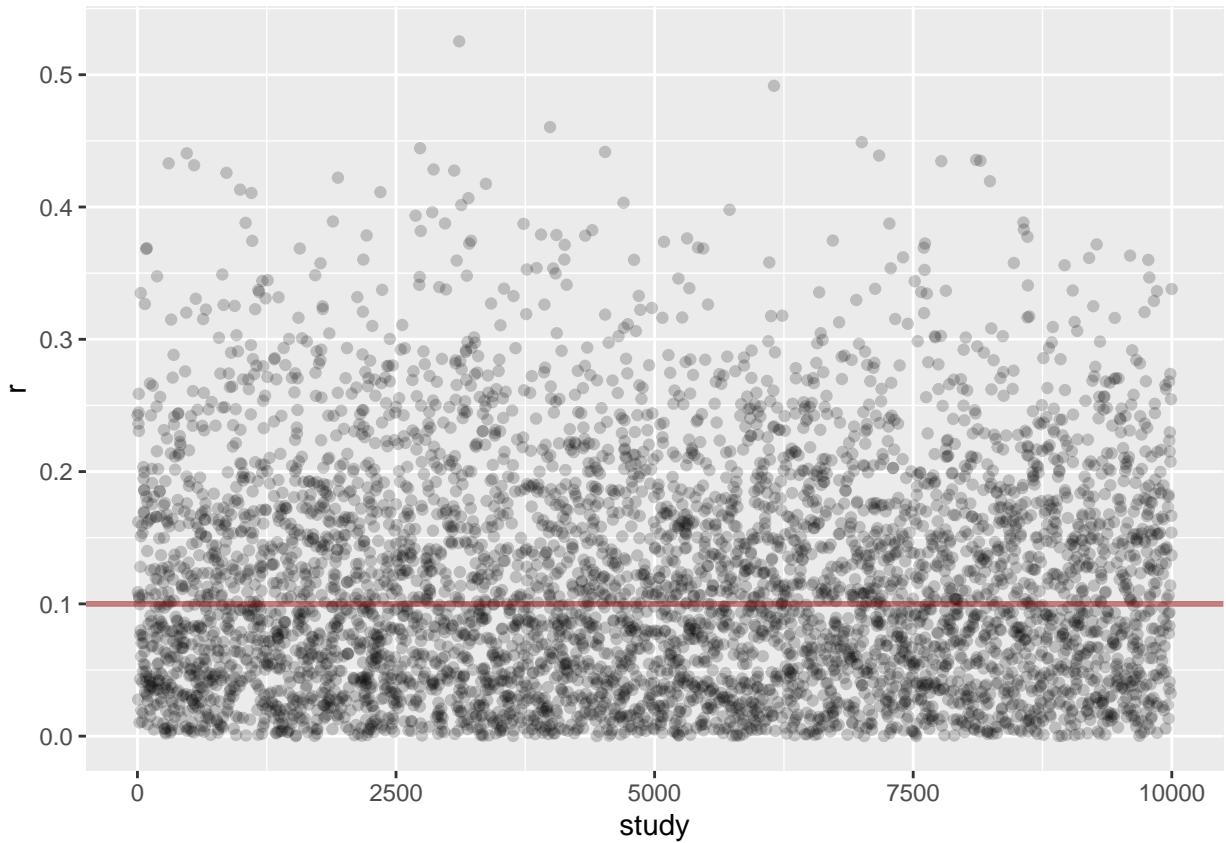
And here is the scatterplot for just the study with the highest correlation.

```
sim_data %>% filter(study == res$study[which.max(res$r)]) %>%
  ggplot(aes(x, y)) +
  geom_point(size = 3, alpha = 0.5) +
  geom_smooth(method = "lm", se = FALSE)
```



Assuming in the theoretical context of the relationship between x and y a positive correlation of 0.1 or larger is considered substantive, how many of the 10,000 studies yield an r of 0.1 or more? All the studies above the red line would have led us to falsely conclude that x and y are substantively related.

```
co_r <- 0.1
res %>%
  filter(r >= 0) %>%
  ggplot(aes(study, r)) +
  geom_point(alpha=0.2) +
  geom_hline(yintercept = co_r,
             color = "darkred", lwd = 1, alpha = 0.5)
```



Linear model

So far, we have assumed an undirected relationship, but more likely, we might expect x to predict y which can be modeled in a linear regression. The standardized regression coefficient will be the same as r in this bivariate example, but we get a p-value and assume the directionality. For the total data and for the first study in the simulated data the model and output look like this:

```
sim_data %>%
  lm(y ~ x, data = .) %>%
  tidy()

## # A tibble: 2 x 5
##   term      estimate std.error statistic p.value
##   <chr>      <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)  0.00119   0.00142    0.838   0.402
## 2 x          0.00267   0.00142    1.88    0.0597

sim_data %>%
  filter(study == 1) %>%
  lm(y ~ x, data = .) %>%
  tidy()

## # A tibble: 2 x 5
##   term      estimate std.error statistic p.value
##   <chr>      <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept) -0.132    0.158    -0.832   0.409
## 2 x          -0.118    0.139    -0.853   0.398
```

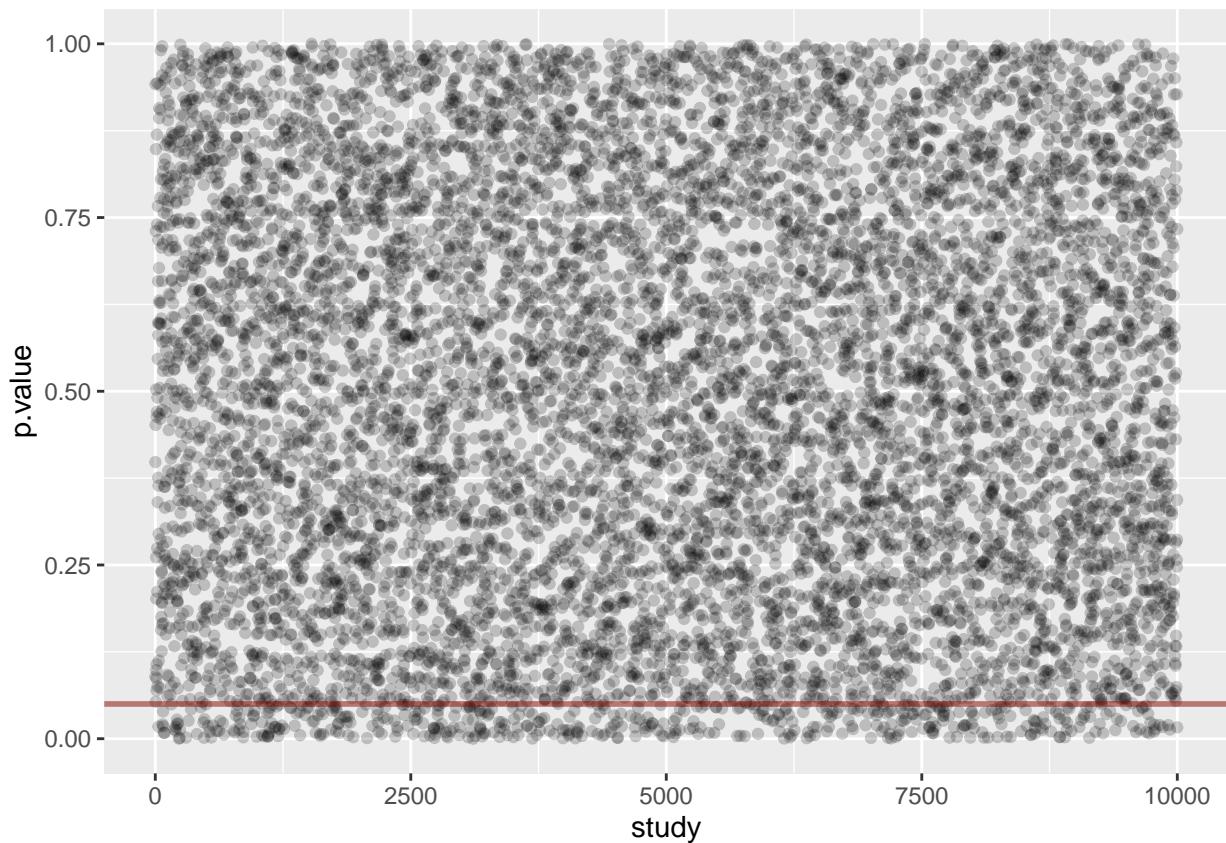
We also learn here that the p-value for the effect of x is in the fifth column of the second row of this tidy regression summary. So now let's run the linear model on each of the 10,000 studies and extract the p-values (this takes about 30 seconds on my laptop). We're also attaching the p-values to the first results data frame (the one containing all the correlation coefficients per study).

```
pvalues <- sim_data %>%
  group_by(study) %>%
  summarize(tidy(lm(y ~ x))[2,5]) %>%
  arrange(p.value)

res <- merge(res, pvalues, by = "study")
```

Setting the alpha level at 0.05, we can again see that a lot of studies turned out to be "significant".

```
co_p <- 0.05
pvalues %>% ggplot(aes(study, p.value)) +
  geom_point(alpha=0.2) +
  geom_hline(yintercept = co_p,
              color = "darkred", lwd = 1, alpha = 0.5)
```

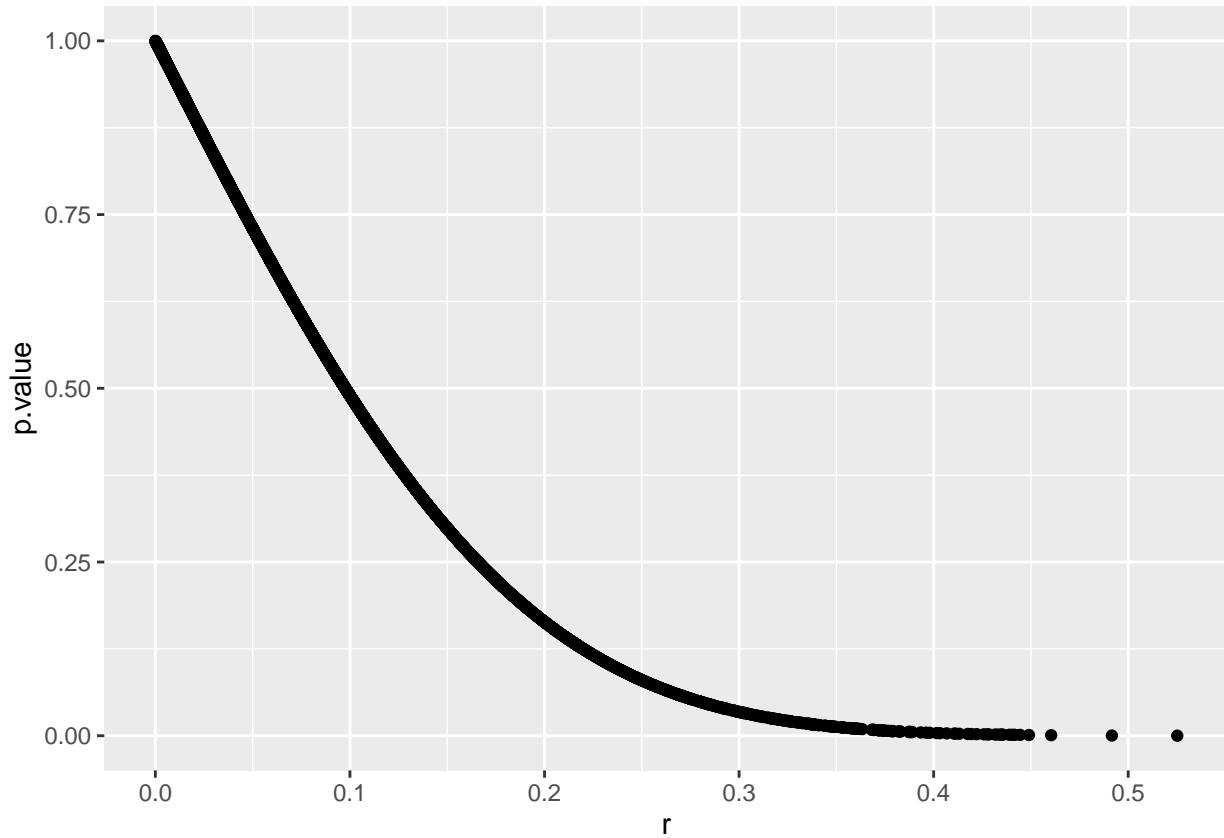


Effect size and significance

So what is the relationship between effect size or correlation and the p-value (again just looking at the positive values, but it's symmetrical)? Unsurprisingly, larger effects are associated with lower p-values, but not in a linear way.

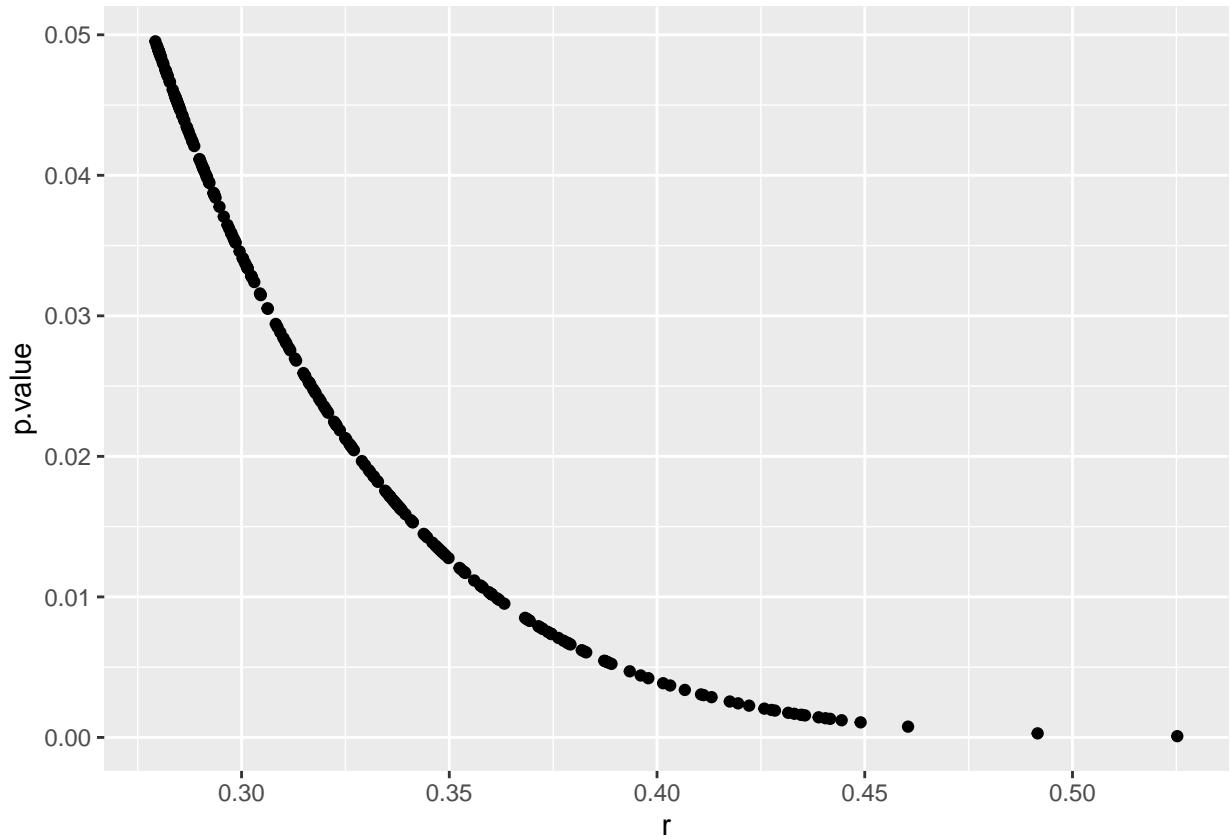
```
res %>% filter(r >= 0) %>%
  ggplot(aes(r, p.value)) +
```

```
geom_point()
```



We can also zoom in on the bottom right portion of the previous plot by only selecting the substantive and significant effects.

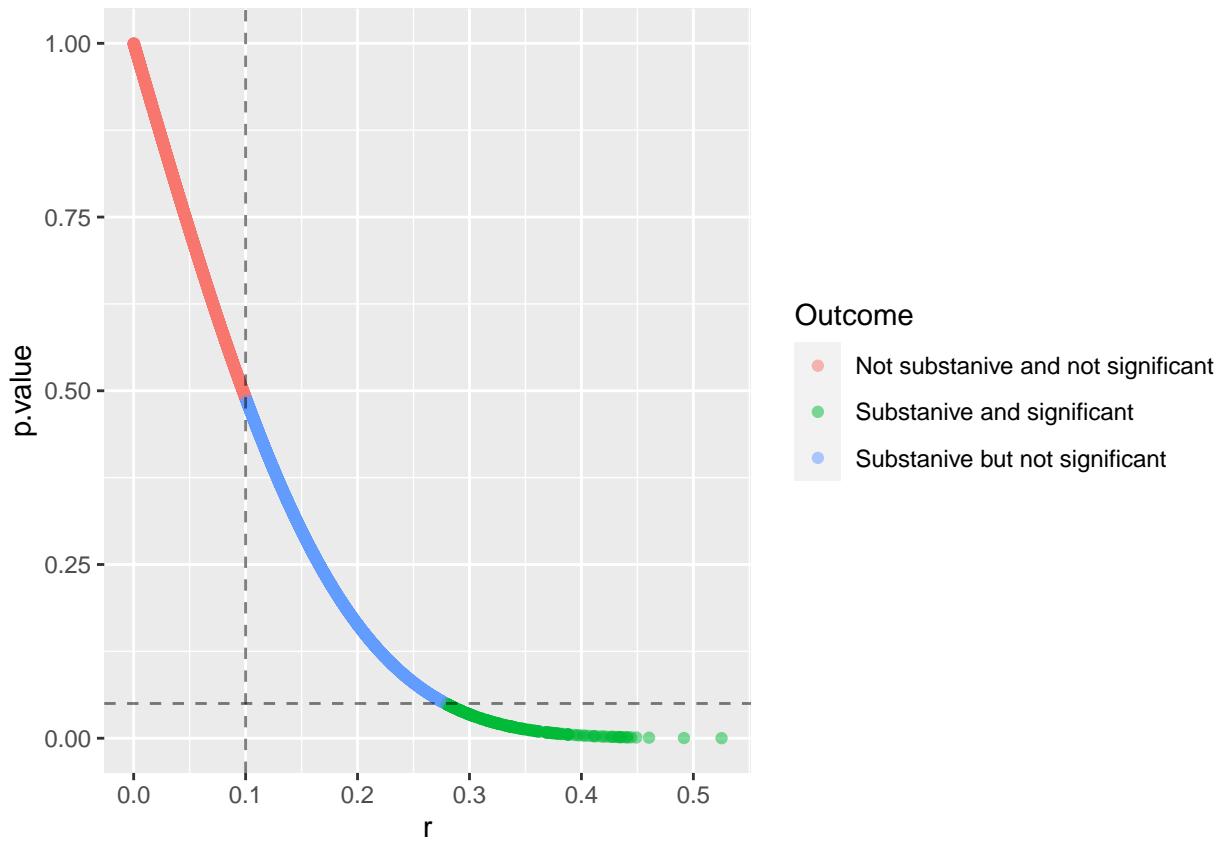
```
res %>% filter(r > co_r & p.value < co_p) %>%
  ggplot(aes(r, p.value)) +
  geom_point()
```



Finally, we can create a new variable `Outcome` to indicate the combinations of effect size and significance cut-offs.

```
res2 <- res %>%
  mutate(Outcome = case_when(
    abs(r) > co_r & p.value < co_p ~ "Substanive and significant",
    abs(r) > co_r & p.value >= co_p ~ "Substanive but not significant",
    abs(r) <= co_r & p.value < co_p ~ "Not substanive but significant",
    abs(r) <= co_r & p.value >= co_p ~ "Not substanive and not significant",
    TRUE ~ "Other"))

res2 %>%
  filter(r >= 0) %>%
  ggplot(aes(r, p.value, color = Outcome)) +
  geom_point(alpha=0.5) +
  geom_hline(yintercept = co_p, lty = 2, alpha = 0.5) +
  geom_vline(xintercept = co_r, lty = 2, alpha = 0.5)
```



False positives

If 10,000 studies were run and only those that find substantive and significant results get published, there is evidently a problem. The probability of finding the “truth”, i.e., a non-substantive effect in a given study, is only about 50%.

```
res2 %>% select(Outcome) %>% table() / s

## .
## Not substantive and not significant          Substantive and significant
##                                         0.5107                         0.0492
## Substantive but not significant
##                                         0.4401
```