False Positive Results Visualized: A Simulationin R
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Let’s assume a simple theory where one variable (x) is related to one other variable (y), but in fact the theory is
false. That is, in reality there is no relationship between x and y. However, if enough studies are run that test
this relationship, some of them are bound to find it. A typical study in social science research might include 50
participants (N). Parts of the code are adapted from this great resource.

Setup and generating data

library(tidyverse)
library(broom)

N <- 50

s <- 10000

Next, the rnorm () function is used to sample 500,000 values for x and y. The defaults aremean = 0Oandsd = 1.
Everything is collected in a data frame (tibble) including a label for the study. So, the first 50 lines in sim_data will
all be from study 1, rows 51 to 100 from study 2, and so on.

set.seed(42)

sim_data <- tibble(study = rep(l:s, each=N),
rnorm(N * s),

rnorm(N * s))

X

y

sim_data

## # A tibble: 500,000 x 3
## study X y
## <int> <dbl> <dbl>

## 1 1 1.37 -0.0965
##t 2 1 -0.565 1.06
## 3 1 0.363 0.0569
## 4 1 0.633 0.0659
## 5 1 0.404 -0.151
## 6 1 -0.106 0.134
## 7 1 1.51 0.577
## 8 1 -0.0947 -0.982
## 9 1 2.02 -1.42
## 10 1 -0.0627 -2.55
## # ... with 499,990 more rows

The true correlation is zero

Now we can look at the bivariate correlation between x and y across all rows/cases. This disregards the nested
structure of the data (i.e., the fact that it’s not 500,000 cases in one study but 50 cases each in 10,000 studies), but
gives us a value very close to the true relationship. The true relationship is zero because the two randomly generated


https://rafalab.github.io/dsbook/association-is-not-causation.html

variables are independent. We also see that the means of x and y are close to zero and their standard deviations
closeto 1.

sim_data %>% select(x,y) %>% cor()

## X vy
## x 1.000000000 0.002662993
## y 0.002662993 1.000000000

sim_data %>’ summarise(
count = n(),
mean.x = mean(x), sd.x
mean.y = mean(y), sd.y

)

sd(x),
sd(y)

## # A tibble: 1 x 5

## count mean.x sd.x mean.y sd.y
## <int> <dbl> <dbl> <dbl> <dbl>
## 1 500000 -0.0000404 0.999 0.00119 1.00

Within each of the 10,000 studies, things can look quite different though.

sim_data %>’ group_by(study) 7%>%
summarise (
count = n(),
mean.x = mean(x), sd.x = sd(x),
mean.y = mean(y), sd.y = sd(y)
)

## # A tibble: 10,000 x 6
## study count mean.x sd.x mean.y sd.y
## <int> <int> <dbl> <dbl> <dbl> <dbl>

## 1 1 50 -0.0357 1.15 -0.128 1.12
## 2 2 50 0.101 0.925 -0.0571 1.04
## 3 3 50 -0.151 0.928 -0.236 1.03
## 4 4 50 -0.0237 0.885 0.0927 0.935
## 5 5 50 0.00794 0.988 -0.237 1.04
##t 6 6 50 -0.0287 1.05 0.0780 1.02
## 7 7 50 -0.0615 0.795 0.256 0.964
## 8 8 50 0.127 0.949 -0.0282 1.02
## 9 9 50 -0.119 0.996 0.0144 1.07
## 10 10 50 -0.116 1.06 -0.147 0.968
## # ... with 9,990 more rows

Next, we’ll focus on the correlation within each study (new variable r) sorted by the size of the coefficient. There are
quite a few studies in which the correlation is clearly not zero.

res <- sim_data %>’
group_by (study) %>
summarize(r = cor(x, y)) %>
arrange (desc(r))

res

## # A tibble: 10,000 x 2
## study r
## <int> <dbl>
## 1 3111 0.525
## 2 6154 0.492



## 3 3989 0.460
## 4 7003 0.449
## 5 2733 0.444
## 6 4521 0.442
## 7 477 0.441
## 8 7170 0.439
## 9 8109 0.436
## 10 8150 0.435
## # ... with 9,990 more rows

By the way, the mean of the individual study correlations is not (necessarily) the same as the overall correlation.

res summarise (average.cor = mean(r))

## # A tibble: 1 x 1
##  average.cor

## <dbl>
## 1 0.00280
sim_data summarise(global.cor = cor(x,y))

## # A tibble: 1 x 1
##  global.cor
## <dbl>
## 1 0.00266

At the other end, we also get negative correlations of roughly the same magnitude.

res arrange (r)

## # A tibble: 10,000 x 2

## study r
## <int> <dbl>
## 1 232 -0.510
## 2 3690 -0.495
## 3 7200 -0.474
## 4 4112 -0.465
## 5 6375 -0.458
## 6 2073 -0.454
## 7 239 -0.452
## 8 9139 -0.440
## 9 4528 -0.437
## 10 7976 -0.435
## # ... with 9,990 more rows

Without grouping by study, we already saw that the correlation is essentially zero, which a scatterplot of a random
subset of cases (because there are too many to plot nicely) confirms.

sim_data slice_sample(n = 10000)
ggplot(aes(x, y))
geom_point(alpha = 0.15)
geom_smooth(method = "1lm", se = FALSE)



res %>
ggplot(aes(x = r)) +
geom_histogram(aes(y
geom_density(color =

= stat(density)), alpha
"midnightblue", lwd = 1)

0.5) +




0.6

Plotting a subset of studies - here just the first 10 - we see that some fit lines have a positive and some a negative
slope.
sim_data %>’ filter(study %in’ 1:10) %>7

mutate(study = as_factor(study)) %>%

ggplot(aes(x, y, color = study)) +

geom_point (alpha = 0.5) +

geom_smooth(method = "lm", se = FALSE)
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And here is the scatterplot for just the study with the highest correlation.

sim_data 7>, filter(study == res$studyl[which.max(res$r)]) 7>%
ggplot(aes(x, y)) +
geom_point(size = 3, alpha = 0.5) +
geom_smooth(method = "1m", se = FALSE)
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Assuming in the theoretical context of the relationship between x and y a positive correlation of 0.1 or larger is
considered substantive, how many of the 10,000 studies yield and r of 0.1 or more? All the studies above the red
line would have led us to falsely conclude that x and y are substantively related.
co_r <- 0.1
res %>

filter(r >= 0) %>%

ggplot (aes(study,r)) +

geom_point(alpha=0.2) +

geom_hline(yintercept = co_r,

color = "darkred", lwd = 1, alpha = 0.5)
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Linear model

So far, we have assumed an undirected relationship, but more likely, we might expect x to predict y which can
be modeled in a linear regression. The standardized regression coefficient will be the same as r in this bivariate
example, but we get a p-value and assume the directionality. For the total data and for the first study in the simulated
data the model and output look like this:

sim_data %>%
Im(y ~ x, data = .) %>%
tidy )

## # A tibble: 2 x 5

##  term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 0.00119 0.00142 0.838 0.402
# 2 x 0.00267  0.00142 1.88 0.0597

sim_data %>Y
filter(study == 1) %>%
In(y ~ x, data = .) %>%

tidy O
## # A tibble: 2 x 5
##  term estimate std.error statistic p.value
##  <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -0.132 0.158 -0.832  0.409
##H 2 x -0.118 0.139 -0.853 0.398



We also learn here that the p-value for the effect of x is in the fifth column of the second row of this tidy regression
summary. So now let’s run the linear model on each of the 10,000 studies and extract the p-values (this takes about
30 seconds on my laptop). We're also attaching the p-values to the first results data frame (the one containing all
the correlation coefficients per study).

pvalues <- sim_data 7>%
group_by (study) 7%>%
summarize (tidy (Im(y ~ x))[2,5]) %>
arrange (p.value)

res <- merge(res, pvalues, by = "study")

Setting the alpha level at 0.05, we can again see that a lot of studies turned out to be “significant”.

co_p <- 0.05
pvalues 7>7 ggplot(aes(study, p.value)) +
geom_point(alpha=0.2) +
geom_hline(yintercept = co_p,
color = "darkred", lwd = 1, alpha = 0.5)
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Effect size and significance

So what is the relationship between effect size or correlation and the p-value (again just looking at the positive
values, but it’s symmetrical)? Unsurprisingly, larger effects are associated with lower p-values, but not in a linear
way.
res />% filter(xr >= 0) %>%

ggplot(aes(r, p.value)) +



geom_point ()
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We can also zoom in on the bottom right portion of the previous plot by only selecting the substantive and significant
effects.

res filter(r > co_r & p.value < co_p)
ggplot(aes(r, p.value))
geom_point ()
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Finally, we can create a new variable Outcome to indicate the combinations of effect size and significance cut-offs.

res2 <- res %>/,
mutate (Outcome = case_when(

abs(r) > co_r & p.value < co_p ~ "Substanive and significant",

abs(r) > co_r & p.value >= co_p ~ "Substanive but not significant",
abs(r) <= co_r & p.value < co_p ~ "Not substanive but significant",
abs(r) <= co_r & p.value >= co_p ~ "Not substanive and not significant",

TRUE ~ "Other"))

res2 7>
filter(r >= 0) %>%
ggplot(aes(r, p.value, color = Outcome)) +
geom_point(alpha=0.5) +
geom_hline(yintercept = co_p, lty = 2, alpha
geom_vline(xintercept = co_r, 1ty = 2, alpha

0.5) +
0.5)
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Outcome
Not substanive and not significant

©  Substanive and significant

p.value

Substanive but not significant

False positives

If 10,000 studies were run and only those that find substantive and significant results get published, there is evidently
a problem. The probability of finding the “truth” i.e., a non-substantive effect in a given study, is only about 50%.

res2 7> select(Outcome) %>’ table() / s

## .

## Not substanive and not significant Substanive and significant
## 0.5107 0.0492
## Substanive but not significant

## 0.4401
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